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Excitations of electrons in solids in the presence of two electromagnetic beams are dis-

cussed. Two excitation processes are considered:

(a) transition of an electron from valence

band 1 to conduction band 2, absorbing a photon with energy #Zw, and subsequent excitation of
the electron to conduction band 3 absorbing a photon with energy #Q; (b) excitation of an elec-
tron to band 2, followed by an intraband transition accompanied by the emission of a phonon,

and subsequent absorption of a photon #ZQ and excitation of the electron to band 3.

It is shown

that there is a distinct threshold energy for the process of type (a) and in certain cases there

is a distinct threshold energy for processes of type ().
a function of 7%« for values close to the threshold value.

The transition rate is evaluated as
At threshold, cascade two-photon

transition may be allowed in points, along a line, or over a surface in K space. These differ-

ent conditions lead to different types of transition-rate spectra.

The effect of the intensity of

the Q beam on the different spectra is discussed. The intensity is allowed to exceed the values
for which cascade transitions may be considered. The transition-rate spectrum for process

(b) is also evaluated.

It is shown that for polar crystals, process (b) will lead to transition
rates of the same order of magnitude as those obtained in process (a).

Possible use of these

effects for the investigation of band structure of solids is discussed.

I. INTRODUCTION

The development of high-power lasers has opened
the way to the investigation of nonlinear optical ef-
fects. However, the use of these effects as a spec-
troscopic tool has remained quite limited because
high-power radiation could be obtained only in dis-
crete frequencies. In cases where an ordinary
light source could be used as one of the beams par-
ticipating in the nonlinear process, nonlinear ef-
fects were, in fact, used as spectroscopic tools.
For example, two-photon absorption processes have
been used for the investigation of band structure in
solids at critical points in the Brillouin zone.! Two-
photon absorption has selection rules which differ
from those of linear optical absorption, thus addi-
tional information can be obtained from these mea-
surements.

Dye lasers? provide high-power beams with fre-
quencies which can be varied continuously, thus
opening new possibilities for the use of nonlinear
optical phenomena as spectroscopic tools. In a re-
cent paper, Yacoby® has shown that nonlinear opti-
cal spectroscopy may indeed provide information
which could not be obtained by linear optical spec-
troscopy, namely, information about electronic band
structure along lines of high symmetry in the Bril-
louin zone. Such an experiment consists of mea-
suring the intensity of a beam with frequency equal
to w + £ produced by two beams with frequencies
equal to w and @ as a function of w. It has been
shown that this intensity varies very significantly
in the vicinity of the point in the crystal-momentum
space at which the two surfaces F,, defined by
€5(K)=%w, and F, defined by €5(K)=%9, just
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touch each other. [€;,(K) and €5(K) are the energy
differences between bands 2 and 1, and 3 and 2,
respectively.] In most cases such points of contact
will occur along lines of high symmetry. There-
fore, spectroscopic measurements of this kind may
provide information that can be directly compared
with theory about electronic band structure along
lines of high symmetry. This experiment has, how-
ever, two fundamental limitations: (i) It can be ap-
plied only to crystals which have no inversion sym-
metry; (ii) strong variation in the spectrum oc-
curs, at the point where the two surfaces Fy, and
Fy touch, only if the gradients Ve ,(K) and

¥ z€x5(K) at the points of contact are in opposite
directions.

In this paper we shall discuss the transition rate
of electrons from a valence band (band 1) to a con-
duction band (band 3) in the presence of two elec-
tromagnetic beams, as a function of the photon en-
ergy of one of these beams. We shall show that
measurement of this transition rate may provide
information about the band structure in cases where
measurement of the intensity of a sum frequency
beam fails. In addition, the rate of two-photon
transitions assisted by the emission of optical pho-
nons will be evaluated as a function of the photon en-
ergy of one of the incident beams. It will be shown
that in certain cases such an effect has a distinct
threshold and may be of the same order of magnitude
as the two-photon transition rate.

The condition for a threshold for two-photon and
for two-photon phonon-assisted transitions are dis-
cussed in Sec. II. In Sec. III we evaluate the non-
linear transition rate without phonon assistance,
whereas in Sec. IV we evaluate the two-photon pho-
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non-assisted transition rates. A summary of the
results and a brief discussion of the experimental
possibilities are given in Sec. V.

II. CONDITIONS FOR THRESHOLD IN TWO-PHOTON
CASCADE TRANSITION RATE

In the presence of an electromagnetic beam with
photon energy %Zw, the electrons that make the tran-
sition from band 1 to band 2 are located on the sur-
face Fy,. Some of these electrons may make tran-
sitions from band 2 to 3 in the presence of another
beam with photon energy #Z§2. These are located in
K space at points common to the surfaces F;, and
Fo. It is evident that the photon energy #Zw which
constitutes the border value between allowed and
unallowed cascade transition, corresponds to the
surface F,, which just touches Fy. Two cases are
of particular interest.

(i) Surfaces Fy, and Fp are spheres. In this case
the surfaces will coincide for certain photon ener-
gies giving rise to a very strong transition rate.
Spherical surfaces will appear, for example, close
to the I point in crystals with full cubic symmetry.

(ii) Surfaces F;, and Fy touch along a line. This
case occurs when the surfaces are elipsoids or hy-
perboloids of revolution with a common axis. Such
surfaces will be found, for example, near K=0 in
tetragonal crystals or in certain cases in cubic
crystals near triply degenerate bands.

Electrons can be excited to band 3 in still another
way. An electron on surface F;, makes a transition
from band 1 to band 2 absorbing one photon 7Zw.
Then the electron emits or absorbs one or more
phonons thereby making intraband transitions.
Electrons that arrive by means of these transitions
at surface Fy may absorb an additional photon 782
and be excited to band 3. We shall denote such a
process as two-photon phonon-assisted transition
(TPPAT).

Let us now discuss the conditions for a threshold
for such a process. We shall confine our discussion
to phonon emission processes which are the domi-
nant processes at low temperatures. 7w, is called
the threshold photon energy if it is a border energy
that separates values for which the TPPAT are
allowed and forbidden. One readily observes that
7w, is a threshold energy for a given value 7% if
the corresponding surfaces F;, and Fy satisfy the
following condition:

(K)-e(K')=¢;, (1)

where K is any point on Fy,; K’ is any point on Fyy;
€; is the phonon energy with wave vector q, and

q=K -K'. (2)
It is necessary that there be at least one point K
and one point K’ for which the equality holds.
Since the phonon energy €; is very small compared
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to characteristic electronic energies, one may ne-
glect it in the discussion of the relative position of
the surfaces around threshold. Within this approxi-
mation the electron emitting a phonon will be found
on a surface of constant energy in band 2 denoted

by F,. The condition for threshold stated above then
requires that at threshold there should be at least
one surface F, simultaneously tangent to both F,
and Fy and there should be no surface F, that cuts
both of them. Note, however, that these are not
sufficient conditions for the threshold.

We shall consider two cases.

Case a. Surfaces Fy;, Fj, and F, have a common
point of contact. In most cases the common point
of contact will be located along lines of high sym-
metry in K space. One observes that condition (1)
requires that F, be located between F;, and Fy5. The
threshold energy for this process is very close to
the threshold energy of two-photon transitions. In
fact, the difference between the photon energies
corresponding to the two thresholds is of the order
of €;. At first glance it appears that the TPPAT
rate will be very much smaller than the two-photon
transition rate. This is because the valence elec-
trons that may make a transition to band 3 should
be located on surface F, close to the point of con-
tact between Fy, and F,. After emitting a phonon,
they are located somewhere on surface F,, thus only
a very small portion of them will be on surface Fa,.
There is, however, one type of electron-phonon in-
teraction for which the electrons have a larger prob-
ability to arrive at F,: This occurs in polar crys-
tals in which the polar-phonon-electron interaction
is dominant. The electron-polar-phonon interac-
tion* is proportional to Ial -1, and since in this case
there are points K and K’ for which |ql is very
small, the probability of the electrons arriving at
Fy is large. In Sec. IV we shall show that in crys-
tals with electron—polar-phonon interaction, the
TPPAT around threshold is of the same order of
magnitude as the two-photon transition rate.

Case b. Surface F,touches F;, and Fy in sepa-
rate points in K space. In this case the TPPAT
will be much smaller than the previously discussed
rates. However, since this effect may precede the
two-photon transition threshold, it may still be of
experimental interest.

III. TWO-PHOTON EXCITATION OF ELECTRONS

We shall evaluate the two-photon transition rate
of electrons from band 1 to band 3 in the vicinity of
the threshold for cascade transitions. The calcula-
tions are made with the following assumptions: The
beam with frequency © may be arbitrarily intense
whereas the intensity of the beam with frequency w
is weak so that the transition rate is proportional
to its intensity. At steady-state conditions, the
transition rate at a given point in K space is given
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by the probability of an electron to be at this partic-
ular point in band 3, pg4( K) divided by the lifetime

7 of the electron in this state. pg(K) is evaluated
by solving the equations of motion of the density
matrix.

Since the conditions postulated here are the same
as those used by Yacoby, ® we shall use the notation
and part of the results obtained there. Using the
same approximations we obtain

cere))

(3)

Tt ( 2(1 —iSyq) + (1 +iS,5)
"‘4528 (1 —1.513)(1 -lslz)"‘ Ex

Pss( K)ri= 1+

where
E12=(e/2m)?|(@,| (P - A)| ®,) | AT¥/R?) , (4)
E2=(e/2m)%|(®,| (B-B)|®5)| AT¥/R?) . (5)

A and B are the vector potentials of the beams with
frequency equal to w and 2, respectively. &; is the
Bloch function of the ith band, and T is the off-diag-
onal relaxation time. S;,, S;3, and Sy are given by

Sla=(h'w —€12)T/ﬁ ’ (6)
S13= (w + B2 - €3)T /71, (7)
Sy = (N - €5)T/7 . (8)

The total transition rate R of electrons _{o band 3 is
given by the integral over all possible K values.
Let us first evaluate the transition rate per unit
volume for the case that the surfaces F,, and F,
are spheres. In this case the energy differences
which appear in the integral depend only on 1 K|.
On the other hand, the matrix elements of (P-A)
and (P B) do not t depend on | Kl but do depend on
the direction of K. In this case it is convenient to
express the integral in spherical coordinates:

R=(1/4n) [ do [ d(cos6) [ | K| 2| K | psy( K)7!
(9)

Since the integral is proportional to £, and &, is
independent of IKI it can be taken out of the inte-
gral with respect to | Kl. In this case the integral
with respect to | K| denoted by R’ depends on ¢ and
6 only through the dependences of £,; on ¢ and 6.
We can therefore express the transition rate in the
following way:

R=(1/41% [ dt s g(&x) [ | K|%d| K| [pos( )T /E4,]
(10)

where g(£4) is a weighting function independent of
fiw. The function g(%,) is complicated and depends
on the specific band structure of the material,
therefore it will not be evaluated here. However,

a qualitative understanding of the dependence of R
on 7w may be obtained from the dependence of R’

on 7w and on £,5. R’ has been numerically evaluated
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FIG. 1. Two-photon transition rate R’ to band 3 as a
function of %w — €139 and £93 as a parameter. The follow-
ing conditions were assumed: Surfaces Fy; and Fy3 are
spheres; #2=1.8eV; T=1=2x10"" sec; m;=~3x10"31
kg; my=10"%1 kg; m3=—-2x10"" kg, Consequently,
mip=7.5x10"32 kg and m{y=—6x10"3 kg. The gap be-
tween bands 1 and 2 and the gap between bands 2 and 3
are €,,=1.25 eV and €,,,=2.42 eV. The vertical coor-
dinate is in arbitrary units. For the relative comparison
of the curves, one should multiply the vertical coordinate
of each curve by the appropriate f factor.

as a function of 7Zw with two varying parameters.
The results varying £, as a parameter are shown
in Fig. 1. The effective masses in this case have
been chosen so that Vze,,( K) and Vge5( K) have
opposite directions. One observes that for values
of £53<<1 the results are proportional to £,; and
therefore to the intensity of the beam with frequency
equal to 2. However, if £,3 approaches unity or
becomes larger than unity, the transition rate sat-
urates and for values of £,; large enough the peak
even splits. The dependence of R on 7w is a
weighted integral of R’ with respect to £,. One,
therefore, expects that R will also saturate and
split if the intensity of the Q beam is large enough.
The ratio between the peak value of R the transition
rate to band 3 and the transition rate to band 2 for
gz, 1 is of the order of 1:250. The results varying
m ¥ as a parameter are shown in Fig. 2. In calcu-
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FIG. 2. Two-photon transition rate R’ as a function of
7w — €139 and mg* as a parameter. The following conditions
were assumed: Surfaces Fyj and Fy; are spheres, £53=2.4,
all other conditions are the same as in Fig. 1. The
vertical coordinate is in arbitrary units. For relative
comparison of the curves one should multiply the vertical
coordinate of each curve by the appropriate numerical
factor f.

lating curve 1 of this figure we took m¥ to be equal
to that used in Fig. 1. Then we decreased its ab-
solufg value so that the gradients of €,,( K ) and

€;3( K) reach the same direction. In so doing the
combined effective mass of bands 1 and 2 remains
constant and positive whereas the combined effec-
tive mass of bands 1 and 3 changes signs from a
negative to a positive value. In this case one ob-
serves that the splitting of the peak disappears. The
splitting of the peak and its dependence on the effec-
tive masses is explained in a way similar to the one
used by Yacoby.® Schematic band diagrams are
shown in Fig. 3. The energy of combined states of
one electron and N or N -1 phot_gns with energy zZQ
are illustrated as a function of K. One observes
that for certain values of K (in fact on surface F,;)
the states (2, K), N| and ((3, K), N - 1| are degen-
erate. As a result of this, the energy bands split.
Two cases are considered. (a) m{,>0 and m¥;>0;
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in this case the gradients of €;5(K) and €,5(K) are
in the same direction. (b) m{,>0 and mf;<0; in
this case the gradients of €;,( K) and €;5(K) are in
opposite directions. One observes that the transi-
tion from band 1 to the combined bands 2 and 3 ab-
sorbing a photon 7Zw is allowed continuously if Zw

is larger than the minimum gap. On the other hand,
such transitions are not allowed for photon energies
near 7wg. This gap in photon energy for which the
transition is not allowed is reflected in the calculated
transition-rate spectrum as a splitting of the peak.
The fact that the transition rate between the peaks
does not go to zero is due to relaxation.

Let us now consider the case that the surfaces Fy,
and F,y touch along a line. It is_convenient in this
case to perform the integral in K space in cylindri-
cal coordinates,

R=(1/4r% [ do [ K, [ K, dK, ps(K)T"t . (11)

Here K is the coordinate parallel to the radial axis
whereas K, is perpendicular to it. If the bands in-
volved in this case are not degenerate at K= 0, both
Si2 and S;; and the matrix elements will be indepen-
dent of ¢ . In addition, in the vicinity of the line of
contact where the main contribution to the integral
is obtained, the matrix elements do not change as

a function of K, and K,. The integrals with respect
to K, and K, have been performed numerically as a
function of Zw varying the same parameters which
were varied in the previous case. The results with
£, as a parameter are shown in Fig. 4. Here
again, the effective masses have been chosen so
that the gradient with respect to K of €45 K) and
€15 I_f) have opposite signs. One observes that the
transition rate first rises to a peak at a photon en-
ergy slightly larger than the threshold photon energy
and then it decreases and saturates. For values of
£.5 close to or larger than unity, the transition rate

E E
|3K,N D '—\ R
[2K, N> 3R N>
- ->
S 13K N-D |2K.ND
[3K N-D

K N>

——\IIE,N)

/

K K
(a) (b)

Energy of combined electron-photon states as
a function of K.

FIG. 3.
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FIG. 4. Two-photon transition rate R as a function of
7iw — €999 and £y3 as a parameter. The following conditions
were assumed: Surfaces F;, and Fy; are ellipsoids of
revolution; mfy;=5x10"31 kg; mip,=10"% kg; myy;= =10~
kg; mis;=—2x10"31 kg, The vertical coordinate is in
arbitrary units. For the relative comparison of the curves
one should multiply the vertical coordinate of each curve
by the appropriate f factor.

at the peak saturates and the slope has again the
form of a split peak. The ratio between the transi-
tion rate to band 3 and the transition rate to band 2
for £,=1 is of the order of 1:1000. The results
with m¥ as a variable parameter are shown in Fig.
5. Here again one observes that the splitting dis-
appears when the effective masses are such that the
gradients have the same direction. In general,
surfaces F;, and Fy will at threshold touch in
points. The contribution to the transition rate in
the vicinity of threshold will come from points in

K space close to the points of contact. Therefore
the transition rate may be expressed in the following
way:

R=23,(1/47% [ p$P(K)mt a®K . (12)

The matrix elements will be different around differ -
ent points of contact but will not change consider-
ably in the vicinity of each point. We denote the
contribution to the transition rate from points around
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m by R'™. Choosing the origin of a coordinate sys-
tem to coincide with the point of contact, we obtain

R™=(1/47% [ a%K, [ dK, p{P(K)rt | (13)

where K, is the coordinate perpendicular to the sur-
faces at the point of contact and K, are coordinates
on the plane tangent to the two surfaces. This in-
tegral has been evaluated numerically and the re-
sults are shown in Fig. 6. We have performed this
calculation for both beams being weak because satu-
ration effects in this case are quite small. One ob-
serves that at threshold there is a sharp rise in the
transition rate which then saturates towards a con-
stant value. In fact, if one neglects relaxation and
considers only weak intensities the transition rate
has the form of a step function.

IV. TWO-PHOTON PHONON-ASSISTED TRANSITIONS

The expressions one obtains for evaluating TPPAT
rates are very complex. For this reason we shall
neglect the effect of relaxation on the functional de-
pendence of the transition rate on Zw. We shall

15
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FIG. 5. Two-photontransitionrate R as a function of

7w = €499 and m{3; and m{y; as parameters. The condition
assumed here is that the surfaces Fy; and Fy3 are ellip-

soids of revolution.

the same as in Fig. 4.

£93=2.4 and all other conditions are
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further assume that both electromagnetic beams are
weak. We shall focus our attention on the general
case in which the surfaces Fy,, F, and Fy touch
in points. As discussed in Sec. II, there are two
cases of interest: (a) Surfaces F,, Fy, F have a
common point of contact, and the dominant electron-
phonon interaction is due to polar phonons. (b) Sur-
face F, touches surfaces Fy, and F,; in separate
points while surfaces F;, and F, have no points in
common.

Case a

The transition rate of electrons from band 1 to
band 3 is given by

R=(r%/4r%87% [ @°K,

Xf dus P1E1~2K1P2§1-2R2P2E2-3§2 ’ (14)

where Tis the lifetime of the electron, and P,g;. .z, is
the transition probability per unit time of an elec-
tron from a state in band » at the point K to a state
in band m at the point K ;- Making use of our as-
sumptions, we obtain

Py ok, = (27'/75)' dlz' 26(512( I-{.1) - hw) , (15)
Pigy-s,= (20/7)|ds|26(en(K,) -#0) , (16
dyz=(e/2m)(d,| P - Kl ®,) ,
- - (17)
dss=(e/2m)(®,|P-B|&,) ,
Pag,- 2, (21/1)| (15, 2K, | H 05 2K )|
X (€5 El) - €Ky - €) . (18)

Here (13, 21-{.2] is a product state of an electron in

band 2 and at the point K, and the first excited state

of the optical vibrational mode with wave vector a
The electron-phonon perturbation is given by*

Hy=—4 ie[—iL—l— —(—1 - B
= TEMC| BV dme, \ ) €D,

1 . -
X2 = (bze'* T +ptemi°F) | (19)
7 lal

q

where € and € are the dielectric constants of
the crystal for high and low frequencies, respec-
tively, and b3 is the phonon-creation operator.
Thus, the matnx element in Eq. (18) for given
values of K1 and K2 can be expressed in the form

Vs i = g/| K -K,| . (20)

Notice that g does depend on I-(.l and Ez. However,
the contribution to the integral in Eq. (14), for
values of 7w close to the threshold value, comes
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only from points El and I-Ez which are close to the
point of contact of the three surfaces. Thus g may
be considered approximately constant.

In order to evaluate the integrals we shall use the
same coordinate system used in order to evaluate
the two-photon transition rate in the general case.
Let us expand the energy dlfferences €45 K) and
€ K) and the energy €,(K) in terms of these coor-
dinates:

€;( ﬁ)=€1m+aKf+uKl , (21)
€x(K)=18 —cK2— 0K, , (22)
€(K)=€p+dK2+bK, . (23)

The requirement that there be a threshold for
TPPAT imposes certain restrictions on the coeffi-
cients. At threshold the surfaces Fy, and Fy; are
expressed close to the point of contact by the equa-
tions

aK?+uK, =€zu/b and cK2+vK, =0,

respectively. The energy €, at a point ffl on sur-
face F, is given by
€,( Ky) = €09 +dK2 K2 ba/u +€3 (24)

Similarly the energy €, at a point K , on surface Fag
is given by
€2( k’z)=€m+dK§z—K§2bC/'U . (25)

Fy; and Fp are the surfaces_corresponding to
threshold if for any K1 and K,,

Rl
|

+ 25

—t ————t ——t

“180 140 C100 60

—t

“20 0 20 60 100 140 180
(t.w—€120)[m eV]

FIG. 6. Two-photon transition rate R as a function of
Fw —€129. The following conditions were assumed:
Surfaces Fyy and F,3 touch in points.
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€(Ky) - €(Kjy)=€; .
The constraints imposed in this case on the coeffi-
cient are

d-ab/u<0, (26)
d-bc/v>0. (27)
]

OF ELECTRONS IN SOLIDS

1185

The transition rate R is expressed in terms of the
coordinates K and K, in the following form:

I= [ 3dK% $dK%,dK, dK,,d¢, dp A K2 + K%+ (Kyy —K,5)2 - 2K g Ky co8(0y — )]

X 6(€ - aK? ~uK,1)0(d(K% ~K2) +b(K,y —K,,) - €3)6(cK?, + vK, ,)

and € = hw — €45.

I=37 [ dK% dK%dK,, dK ] [K% + K2+ (K - K,0)? 2 -4K3 K2

X 6(€ —aK? - uK,,)6(d(K4 —K2) +b(K,; —K,,) — €;)5(cK% +vK,,) .

Integrating over K,; and K,,, we obtain

R=(1%/2muvCh%) | dyogdy|

K,
X["K o [FK ) - GUE DM dK , , (31)
where

A=d-bc/v; C=ba/u-d;

€=b(lw ~ €10)/u — €5 ;
F(K,)=(e - Ak?)/C +K?
+[e3/b+dK? /b —d(e - AK?)/bc? ;

G(K,)=2K (€ —AK?)/C)? ; Kqo= (/A1 .

The last integral has been numerically evaluated
and results for a specific case are given in Fig. 7.
In order to present the results in a way that they
can be compared to the two-photon transition rate,

7 was estimated in the following way: According to
our assumption the relaxation is mainly due to elec-
tron—-polar-phonon interaction, thus

712 (8r%)! [ d°K,Pog, - ok, - (32)

In carrying out this calculatlon £ was assumed to be
independent of K1 and K 2. This assumption is, of
course, not quite accurate. However, it helps us
obtain an order of magnitude.
of the integral in Eq. (31) one finds that the thresh-
old energy for TPPAT is given by

fw =€ +uey/b . (33)

This threshold energy is larger than the threshold
energy for two-photon transitions by ue;/b. For

energies larger than this threshold, the transition
rate rises sharply although not as a step and then
saturates to a value which is of the same order of

From the upper limit

The integrals with respect to ¢, and ¢, are immediate and lead to the result that

R=(r%/41°8°)(2n/7)* | d12gd | °1 (28)
and
(29)
129y
(30)
(
magnitude as the two-photon transition rate. When

the surfaces F;, and Fy are approximately spheres
and relaxation is neglected the two-photon transition
rate has as a function of #Zw the form of a sharp
peak. If one neglects the dependence of €; on E the
TPPAT rate has also the form of a sharp peak
shifted in energy by

e;my/my .
R -
L
|
-
15
=
10
5 -
0 ' 10 20 T 30
(boo-€n) (me V]
FIG. 7. Sum of the two-photon and TPPAT rate as a

function of Zw — €;9, the phonon energy € = =30 meV. The
parameters of the expansmn of €,(K) and 523(K) are
a=10"%" Jm? p=2x10"2 Jm; c=2x10"38 Jm? d=6
x107® I u=10"%Jm; v=2x10"2 Jm.
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(In this case the approximation is a good one be-
cause Fy, and Fy are approximately spheres in a
region, in K space, very small compared to the
Brillouin zone.) The effect of the relaxation on the
functional dependence of the transition rate on Zw
will be to broaden the peaks to the order of Aw
=277,

Case b

The transition rate in this case is again given by
Eq. (14). The main contribution to the integral is
obtained in the vicinity of the two points of contact.
We, therefore, expand the energies €;, and €, in
the vicinity of their point of contact in terms of the
coordinates K and K,; which are tangent and per-
pendicular, respectively, to the surfaces at the
point of contact. Assuming for simplicity cylindri
cal symmetry, we obtain

€12( I-E) = €120 +aK§1 +MKL1 s (34)
€x(K)=€p+d K3 +b: K,y (85)

Similarly, we expand €,; and €, around their points
of contact:

€55( K)=Q - cK% ~vK,, , (36)
€g(k.)=€ao+daKfz+b2Kl2 . (37)

In order that there be a threshold the following in-
equalities should be satisfied

d, —ab1/u<0, (38)
dy—cby/v>0 . (39)

The transition rate can then be expressed in the
form

R=7%2n/h)*|dy2 Vi, &, dm| 21/ (47°87%) , (40)
where

I= [ $aK? dK%dK, dK,,dp1d¢;0(€ —akl —uK )

X6(dy K% —dpK2+ b1 Kyy ~—boK,p— €3) 0(cKZ, +vK, ,) .
(41)
Integrating over ¢,, ¢,, K,;, and K,,, we find that
I=(7%/uv) f dK% dK%, 6(K% (dy —aby /u)

—K2)(dy—cby/v) — €3+ €by Ju) . (42)
This expression is then exactly integrated and found
to be
I= li bl E/u - €a
uv (ab, /M - dl)(dg - baC/'U) ’

One therefore observes that in this case the TPPAT
rate is linear in €=7w - €; 5.

(43)

V. SUMMARY AND CONCLUSIONS

The two-photon transition rate of electrons from

Y. YACOBY AND G. KOREN 4

valence to conduction band without and with phonon
assistance has been evaluated as a function of the
photon energy of one of the beams. It has been
shown that the two-photon transition rate without
phonon assistance undergoes strong changes in the
vicinity of the energy corresponding to the threshold
for two-photon cascade transitions. This threshold
takes place when the surfaces F;; and F3, corre-
sponding to the photon energies 7Zw, and 7§ of the
two beams, touch each other. In the general case
when the two surfaces touch at points, the transition
rate has the form of a distorted step. When the two
surfaces touch along a line, the transition rate has
the form of a peak, one side of which decreases to
a finite value, whereas in the case that the surfaces
are spheres the transition rate has the form of a
peak. For low-intensity beams the transition rate
is, of course, proportional to the intensity of each
of the beams. When the intensity of one of the
beams is increased to values such that £,3 becomes
equal to or larger than unity the intensity of the
transition rate saturates. Moreover, if the com-
bined effective masses m{, and mJ; have opposite
signs, the transition rate in the case of spherical
surfaces splits into two peaks. A less pronounced
effect is found when the surfaces touch along a line.

The TPPAT rate has been shown to be of interest
in two cases:

Case a. The surfaces Fy,, Fy and F, have a com-
mon point of contact and the dominant interaction of
electrons with phonons is with polar phonons. In
this case the transitions rate rises sharply for pho-
ton energies close to the threshold photon energy
and then saturates to a value smaller, but of the
same order of magnitude, as the two-photon transi-
tion rate.

Case b. Surface F,touches surfaces Fy, and Fy
in different points. In this case the transition rate
is proportional to the difference

w - Awg — €3u/by

Measurement of the transition rate as a function of
7w may yield some useful information about the band
structure. At threshold the photon energies 7w, and
72 of the two beams are equal to the energy differ-
ences between bands 1 and 2 and between bands 2
and 3, respectively, at the same point in K space.
This point is the point of contact between the two
surfaces F;, and Fy5 and in most cases will be on a
line of high symmetry. This information can, of
course, be compared directly with theoretical band-
structure calculations. The information obtained

in this way is similar to that obtained from measur-
ing the intensity of a parametric beam close to the
threshold for double resonance. However, mea-
surement of the transition rate is not limited to
crystals with inversion symmetry nor to cases for
which the gradients of €;,(K) and €;5( K) have oppo-
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site directions at the point of contact.

As pointed out in Sec. 1V, the energy difference
between the threshold for two-photon transition and
for TPPAT is equal to u€;/b. u and b are equal to
the absolute values of the gradients of €;,(K) and
€y( K), respectively, near the point of contact of the
surfaces Fy,, Fg, and F, Since in this case a is
very small, €;is, in most cases, known either from
ir or Raman measurements. Thus, measurement
of the transition-rate spectrum may yield the ratio
u/b which can be directly compared to theoretical
band-structure calculations.

The actual determination of the transition rate of
electrons to band 3 is, of course, a lot more diffi-
cult than the measurement of the parametric beam.
However, in cases where band 3 does not have points
in common with band 2, it can be carried out in the
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following way:

Electrons which have been excited to band 3 will
cascade to a local minimum in this band. From
here they will make transition to the almost empty
conduction band—band 2. Provided that radiative
transitions are allowed by symmetry at this point,
the transition will be predominantly radiative. The
photon energy of the fluorescent light is equal to the
energy gap between bands 2 and 3 at the local mini-
mum energy point in band 3. Thus, measurement
of the intensity of the fluorescent light at the appro-
priate wavelength as a function of Zw, will yield the
desired spectrum.
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The method of lattice statics has been applied to determine the strain-field displacements
about single octahedral and tetrahedral carbon interstitials in @-iron as well as the strain-

field interaction energies between pairs of octahedral interstitials.

A comparison of the

exact lattice-statics displacements to the corresponding results of an asymptotic lattice-statics
calculation indicates that elasticity theory is not valid closer than 254 from the octahedral
interstitial in either the [100] or [011] direction in the lattice, where a is half of a cubic unit-

cell side.

The lattice-statics displacements have also been compared to analogous results ob-

tained from a direct-space calculation, and some differences between the two sets of results are

apparent.

Relaxation energies have been calculated for the two types of carbon interstitial,
and the octahedral configuration is found to be the more stable of the two.

Assuming the tetra-

hedral configuration to be the saddle point for interstitial migration, the migration energy is

found to be 0.27 eV.

I. INTRODUCTION

Since the advent of the high-speed digital com-
puter, it has become possible to perform theoretical
calculations to determine the properties of crystal
lattices containing point defects. In particular,
given a reasonably reliable expression for the in-
teratomic potential between the atoms of the lattice,
one can obtain numerical results for the energy
change, volume change, and atomic displacements
associated with the creation or migration of va-

cancies or host-atom-type interstitials within the
lattice.

The most common approach to this type of prob-
lem is to treat the defect as though it were sur-
rounded by a small crystallite of host atoms, each
of which is permitted to move as a discrete particle
and allowed to interact by means of pairwise inter-
atomic potentials. The remainder of the crystal is
treated as an elastic continuum. The displacements
of the discrete atoms surrounding the defect are
found by minimizing the energy in the crystallite



